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Purpose. To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on

core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major

effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic

differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling.

Methods. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a

thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using

NONMEM.

Results. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model

was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the

circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a

more realistic description with improved simulation properties, and further changed the model into one

that could not be falsified by the autocorrelation function.

Conclusions. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a

biologically plausible model. The quality of the model was improved by the use of SDEs.

KEY WORDS: autocorrelation; immunomodulation; PKPD model; SDE; statistical model;
thermoregulation.

INTRODUCTION

Interleukin-21 (IL-21) is a novel cytokine (1) that is
produced by activated CD4+ T-cells and demonstrates an
ability to activate CD8+ killer T-cells, natural killer, and B-cells
(2). These immunomodulatory functions lead to the hypothesis
of IL-21 as a potential anti-cancer immunotherapeutic drug,
which is presently under investigation in clinical studies. Like
many other anti-cancer agents, including other interleukins,
IL-21 is seen to produce a broad range of biological effects that
may be related to both efficacy and safety of treatment. The
present work focuses on the effects of human recombinant IL-21

on thermoregulation in monkeys where IL-21 is observed to
cause an increased core body temperature.

Drugs may modify the regulation of body temperature,
either by changing heat production i.e., increasing metabo-
lism, by changing heat loss e.g., by cutaneous vasoconstric-
tion, or indirectly by changing the regulation process i.e., by
increasing the set-point temperature (3) that may be associ-
ated with lowering the signalling of temperature sensitive
neurons in the hypothalamus. In technical terms, fever has
been defined as a state of elevated body temperature caused
by an elevated thermoregulatory set-point (4). However, this
definition is still under debate (5), and we shall use the term
fever in the broader meaning of the word that includes any
kind of hyperthermia, and refer to the specific mechanistic
causes when necessary. Drug-induced fever is observed
following treatment with a wide variety of drugs (3) e.g.,
halothane causes a hypermetabolic state called malignant
hyperpyrexia, phenothiazines cause an increase in the set-
point temperature, and anticholinergic drugs increase temper-
ature by decreasing sweat production. Fever is a characteristic
effect of pyrogenic cytokines, for which elevation of the set-
point is a likely, but possibly not the only mechanism. Most
often, fever is associated with fatigue and nausea and can
significantly reduce the quality of life, while the more extreme
drug induced hyperthermia can be fatal. Fever caused by an
elevated set-point can be treated with antipyretic drugs, e.g.,
the NSAIDs, whereas hyperthermia caused by a hypermet-
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abolic state is generally unaffected by the antipyretics and
more difficult to treat.

The present work proposes to quantify interleukin-21
(IL-21) induced elevation of core body temperature in
cynomolgus monkeys with a pharmacokinetic pharmacody-
namic (PKPD) model. The mechanism for IL-21 induced
fever are currently unknown, but they are believed to include
elevated thermoregulatory set-point, consistent with the
clinical finding that IL-21 induced fever can be brought
down by administration of paracetamol, and with findings of
other cytokines. PKPD modelling of drug induced changes in
body temperature can provide a summary description of the
observed effects, enable predictions for other administration
schemes, and increase understanding of the underlying
mechanisms. For a general system, one could imagine that
modelling of temperature could forecast dangerous hyper-
thermia, or guide administration of antipyretic drugs given in
combination with fever inducing drugs.

Modelling of the regulation and variation of body
temperature are well established problems that have been
challenged with many types of mathematical models. Some
models incorporate a vast amount of physiological and
physical details about heat regulation that enables fruitful
simulation models, e.g., (6). Other more statistical models
aim to precisely describe and help to identify the circadian
rhythm of body temperature, e.g., see (7) and (8). PKPD
models of temperature regulation are typically formulated via a
system of ordinary differential equations (ODEs) incorporated
in a mixed-effects model to account for inter-individual differ-
ences, e.g., see (9Y11). Among these, the set-point model
involves a complex systems feedback mechanism that has
proven useful for several studies (10,11). Whereas these efforts
have been productive, we find that previous PKPD models of
temperature regulation fail to integrate many of the elements
in the physiological simulation models as well as the method-
ology applied in more statistical models. The present model
aim to comply with these two points, as discussed below.

Aspects of more physiological models has been included
by extending a model with a set-point to include also
metabolism and heat loss; all merged in accordance with
the basic, but evidently not all theory of heat regulation and
experimental findings in monkeys. This allows the pharma-
codynamic effect to be described as direct effects on the
metabolism, the set-point, and/or the heat conduction with a
natural inclusion of the basic counter regulatory mechanisms
of the body, which may improve predictions of new
experimental situations. Note that this type of model aim to
include the most basic mechanisms to explain the most basic
phenomena of heat regulation, but we do not aim to produce
a model that can explain all phenomena of this complicated
system.

The methodology of more statistical temperature models
is incorporated by extending the set of ODEs to a set of
stochastic differential equations (SDEs), using a mixed-
effects model based on SDEs (12). The use of SDEs is a
novel technique in PKPD modelling that has been presented
both as a diagnostic tool that can facilitate systematic model
development (13,14), and also as a means to facilitate a more
realistic description of the variations in the system (15,16).
The present work focuses on the implementation of SDEs to
provide a more realistic description of the variations, and

among other things, we aim to demonstrate that implemen-
tation of SDEs may improve the predictions of the model by
producing more realistic probabilities for a given animal to
get fever. Since SDEs is a new technique of PKPD modelling,
it will be emphasized how the results using SDEs differ from
the corresponding results based on ODEs.

MATERIALS AND METHODS

The study plan was reviewed and approved by a Novo
Nordisk ethical committee. The animal unit was animal
welfare monitored and found to be in compliance with the
Novo Nordisk Principles for the use of animals as well as
national legislation and the NIH BGuide for the Care and
Use of Laboratory Animals.^

Animals

Sixteen purpose bred adolescent male cynomolgus
primates (Macaca fascicularis) obtained from Guangxi,
China, were used in the study. Prior to the study each
primate was examined by veterinary surgeon and confirmed
fit for the study.

The animals were implanted with telemetry transducers,
type TL11M2-D70-PCT (Data Sciences International), for
measurement of core body temperature. The animals were
group-housed in a primate unit in gang cages. The room was
illuminated by fluorescent lights timed to give a 12 h lightY
dark cycle. The temperature range was 21Y26-C and the
relative humidity range was 41Y86%. The animals were aged
3.6 to 4.75 years and weighed 3.1Y4.8 kg at the initiation of
the study. The primates were fed a diet of MP(E) SQC
(Special Diets Services, Witham, UK) with a supplementary
diet of fruit, vegetables, and nuts. Tap water was available ad
libitum.

The animals were acclimatized in general three weeks
prior to the study and in the measuring cage on three
occasions before the initiation of the study. A number of
environmental enrichments were available: swings, stubs,
swimming pool, puzzle feeders, toys etc.

Data Acquisition

During data acquisition the animals were in isolation
cages within the animal house. Each telemetered cage was
equipped with Data Sciences receivers. A Data Sciences
telemetry recording system was used for continuous record-
ing of the physiological data. The acquisition and analysis
were made using Notocord HEM data acquisition and
analysis software (version 3.2). For each dose, data collection
commenced at least 1 h before dosing and ended approxi-
mately 24 h after dosing with 500 Hz sampling. Pretreatment
of data prior to modelling involved, assessment of average
temperature for each 10 min interval, keeping only the first
average temperature of each hour.

Study Design

Four dosing groups consisting of four animals each were
treated with 0, 0.03, 0.5 or 3 mg/kg IL-21. The animals were

299PKPD of IL-21 on Thermoregulation in Monkeys



dosed by intravenous bolus injection. The dose volume for
the 0.5 and 3.0 mg/kg IL-21 administrations was 3.0 ml/kg and
1.0 ml/kg for the 0.03 mg/kg IL-21 administrations. The
animals received a dose on days one, three and five of the
study. Following each dose body temperature was recorded
continuously for 24 h.

The study was conducted in accordance with the OECD
Principles of GLP.

MODEL OF TEMPERATURE REGULATION

The PKPD model of temperature regulation can be
divided into two parts. First, a baseline model that aims to
reflect physiological mechanisms of temperature regulation,
including the effects induced by a circadian rhythm, changes in
ambient temperature, and/or forced changes in metabolic rate,
e.g., induced by exercise. This part is presumably generally
applicable for other drugs, since various pharmacological
mechanisms can be implemented. The second part of the model
includes a specific proposal for the pharmacodynamic effect of
IL-21 on thermoregulation. For a brief overview of the
structural model, see Fig. 2. The description of the inter- and
intra-individual variability models are of special interest for
the present analysis, and shall be described separately after
presentation of the structural model.

Baseline Model

Body temperature is ultimately regulated by the balance of
heat production and heat loss, where the primary mechanism of
regulation is based on control of heat loss, whereas increased
metabolism, e.g., by shivering is used in more extreme
situations, see (17). In this setting, heat production is under-
stood as an independent variable that drives the system, i.e.,
metabolism varies in order to meet the energy demand of daily
living, causing changes first in temperature and subsequently
in heat loss. One could imagine two ways of regulating heat
loss after an increased heat production, see Fig. 1. First, the
heat loss may increase to approach the metabolic rate and thus
obtain heat balance, where the delay between the increase in

heat production and increase in heat loss will lead to heat
balance at an elevated temperature. Second, the heat loss may
exceed heat production so that heat balance will not be
reached until the temperature has decreased to its original
baseline value.

The physiology of heat regulation reviewed in (17)
indicates that heat loss is controlled to obtain balance between
heat production and heat loss, rather than to defend a specific
temperature. We note that temperature sensing is probably the
most important mechanism to detect discrepancies between
heat production and loss in order to control this balance.
Experimental results lead to the understanding that the typical
nocturnal decrease of body temperature is a consequence of
the delay between a rapid decrease in metabolic rate e.g., due
to inactivity, and the subsequent decrease in heat loss until
temperature returns to a new steady state. The present model
adheres to this concept by letting metabolic rate drive the
circadian rhythm, and further by letting body temperature
control conduction of heat. An increased heat production or
equivalently an increase in external temperature will increase
the body temperature, and subsequently the regulatory
mechanism will increase heat conductance and thereby also
heat loss, which ultimately drives the system towards steady
state at a higher temperature. The equations can be written,

Mc tð Þ ¼
Mday for t 2 0; tnight

� �
; tday; tnight þ 24h
� �

; :::
� �

Mnight for t 2 tnight; tday

� �
; tnight þ 24h; tday þ 24h
� �

; :::
� �

(

dM=dt ¼ �km M �Mc tð Þð Þ ; M 0ð Þ ¼Mday

dT
�

dt ¼ c�1 M � k T � Tað Þð Þ ; T 0ð Þ ¼ Tday

k ¼ kb þ kinc T � Tbð Þ
ð1Þ

M is the metabolic rate, which decays with a rate constant km

towards the metabolism dictated by the circadian rhythm
Mc(t), which under normal physiological conditions varies
around a baseline value Mb with a day time Mday and a night
time value Mnight, where tday and tnight are the times where the
day and night periods start. The mechanisms causing diurnal
variation in Mc(t) are not included in the present model. c

Temperature 
Heat Loss 
Metabolic Rate 

Night Time Day Time 

Temperature 
Heat Loss 
Metabolic Rate 

Night Time Day Time 

Fig. 1. Two possible ways of regulating heat loss after an increased heat production. First (left), the heat

loss may increase to approach the metabolic rate and thus obtain heat balance, where the delay between

the increase in heat production and increase in heat loss will lead to heat balance at an elevated

temperature. Second (right), the heat loss may exceed heat production so that heat balance will not be

reached until the temperature has decreased to its original baseline value.
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is the specific heat constant, Ta is the ambient temperature, k
is the conductance of heat, which has the baseline value kb

when the temperature is at baseline Tb, and kinc gives the
increment in conductance per degree when the temperature
rises. The model explains heat loss, only through terms
proportional to the difference between body temperature and
ambient temperature (T j Ta), as appropriate for conduction.
Radiation causes a heat loss proportional to T4 � T4

a

� �
and

evaporation is typically understood as temperature indepen-
dent. Conductance ceases to explain heat loss for example
when Ta approaches body temperature, and the model should
be extended if it is needed to include e.g., high ambient
temperatures.

The structural parameters to be estimated for the base-
line model were chosen as: Tb, kinc, km, tday, tnight, and DT,
where DT is the difference between day and night time steady
state temperature, Tday and Tnight. Tday ¼ Tb þ $T=2; and
Tnight ¼ Tb � DT=2 .

Neither the specific heat nor the baseline metabolic rate
are identifiable when only temperature data is available, and
consequently c was fixed to values obtained in humans, c =
3.47 kJ/(kg C), and Mb was fixed to 3 W/kg. This value was
derived using squirrel monkey baseline metabolic rate of
approximately 4 W/kg (18), and allometric scaling (19).
Likewise, the ambient temperature was fixed to 21-C, as
suggested by the experimental conditions, and except for kinc,
the model was not sensitive to changes in the ambient
temperature. The baseline conductance and the night and

day time metabolic rate can now be calculated from the
steady state conditions:

kb ¼Mb= Tb � Tað Þ
Mday ¼ kb þ kinc Tday � Tb

� �� �
Tday � Ta

� �

Mnight ¼ kb þ kinc Tnight � Tb

� �� �
Tnight � Ta

� �
ð2Þ

Pharmacodynamic Model

The baseline variations of temperature regulation can be
altered e.g., by disease, or by the introduction of exogenous
compounds. Drugs are seen to modify thermoregulation either
by directly affecting the metabolic rate, by direct effects on the
heat loss, e.g., via vasodilatation, or indirectly by affecting the
set-point temperature. Physiologically, the set-point is modu-
lated through the temperature sensing neurons in the hypothal-
amus. If these neurons emit signals that correspond to a
temperature lower than the set-point, the conductance is
decreased and the temperature increases towards a higher
steady state. For the baseline model described above, there is no
single temperature that the body regulates towards, rather the
level of the steady state temperature depend upon the
metabolic rate. Consequently, it is necessary to define the set-
point temperature relative to some metabolic rate. In the
present work, the set-point is defined as the temperature the

Fig. 2. Model for IL-21 induced regulation of core body temperature in cynomolgus monkeys. The

model includes a part that describes the general mechanisms for temperature regulation (dark), a part

that describes how IL-21 is believed to regulate the set-point through prostaglandin E2 (white), and a

part that empirically explains the relationship between administration of IL-21 and the effects (light).

Each square box represents a compartment, i.e., a differential equation or the solution thereof, whereas

each oval box represents an algebraic expression. A physical flow from one compartment to the next is

depicted with an arrow, while a bullet is used to signify an influence of one model entity on another.
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body regulates itself towards at Mb, i.e., Tb if no drug has been
introduced. The introduction of drugs can be understood to
change the baseline model by,

dM=dt ¼ �km M � f1 Mc tð Þ; Drug ; tð Þð Þ
dT
�

dt ¼ c�1 M � k T � Tað Þð Þ
k ¼ kb þ kinc T � Tb 1þ f3 Drug; tð Þð Þð Þ þ f2 Drug ; tð Þ

ð3Þ

where f1, f2, and f3, are some functions of time and drug
intervention, as typically modelled via plasma concentration. f1

allows drug modulated steady state metabolism, f2 describes a
drug effect on heat conduction, whereas f3 involves drug mod-
ulation of the set-point to a new value Tz ¼ Tb 1þ f3 Drug; tð Þð Þ.
Whereas this model structure can be used to describe the
effects of a given drug, it is unlikely that it can be used to
discriminate between e.g., effects on set-point and direct
effects on conductance, when based exclusively on tempera-
ture data without precise knowledge of the function of drug
effect.

The IL-21 induced rise of body temperature in cyno-
molgus monkeys is a rather complex set of phenomena (see
data presented in Fig. 5 in the following section):

1) The effect of IL-21 seems to be absent following the
first dose. This phenomenon confirms previous findings,
indicating the existence of some regulating mechanism that
must be switched on before any IL-21 induced effects on
temperature can occur. For the 3 mg/kg treatment group, the
temperature seems to be unaffected within 24 h of the first
dose, but an increase is seen 48 h later at the time of the
second dose. For the 0.5 mg/kg group, most monkeys exhibit
only a partial response to the second dose, and a full response
to the third dose.

2) The nocturnal decrease in temperature seems to
vanish for the two highest treatment groups during the
period where IL-21 has an effect. Note that the monkeys
were unable to sleep in these periods.

3) IL-21 induces fast as well as slow temperature
elevations. A quick peak is seen to last about 24 h, whereas
a slower mechanism leads to persistent elevated temperature
48 h after the second dose of 3 mg/kg.

4) The fast peak is considerably lower in magnitude
when temperature is already elevated; compare e.g., the
effect following third dose in the 0.5 and the 3 mg/kg
treatment groups.

The delayed onset of the pharmacodynamic effects
(phenomenon 1) was modelled with an empirical function
that starts at 0 indicating no effect, and when the time since
the first dose increases, the function smoothly goes towards
one, indicating full effect. We assume that a certain dose
level is necessary for this priming to take place, but the
available data did not allow a reasonable estimate of this
value. For practical reasons, priming was implemented only
for the high dosing groups, where an effect on temperature
was seen in the animals. The following priming function was
used,

fprime tð Þ ¼ �high dose 1� exp �� t � tdose1 � tprime

� �� �� ��1 ð4Þ

where dhigh_dose is 0 for the low dose levels and 1 for the high
dose levels, tdose1 is the time of administration of dose 1, tprime

is the characteristic time of priming, and a gives the shape of
the priming function. The priming function for the onset of
the pharmacodynamic effect was also used to model the
disappearance of the nocturnal decrease in the metabolic
rate (phenomenon 2). This effect on metabolism, perhaps
by preventing sleep and rest at night, was consistent with
simultaneous observations of heart rate that maintain a day
time high value during nights when IL-21 affects temper-
ature, but exhibit a nocturnal decrease when no effect is
seen on temperature. The steady-state day and night time
metabolic rates were modelled to be changed by the drug
as

M�
day ¼ f1 Drug ; tð Þday ¼Mday

M�
night ¼ f1 Drug ; tð Þnight ¼ 1� fprime

� �
Mnight þ fprime Mday

ð5Þ
where M�

day and M�
night are the drug modulated day and

night time metabolic rates. At the present time, we were not
able to formulate a reasonable model for Bun-priming^ of the
system, e.g., the return to a normal circadian rhythm. It may
be appropriate to develop more realistic and mechanistic
dose-response relationships for the priming and the Bun-
priming,^ but at present we use the function given above.

The fast and slow effects following dosing with IL-21
(phenomenon 3) are modelled to elevate the thermoregula-
tory set-point as described below. Both effects are described
by gamma distribution functions giving the solution to a
system of transit compartments that could represent the
chain of events between dosing and effect. The gamma
distribution function can be written as

gN;T tð Þ ¼ exp �tN=Tð Þ tð ÞN�1ðN=TÞN N � 1ð Þ! for t

> 0 ; gN;T tð Þ ¼ 0 for t � 0 ð6Þ

where gNT is the gamma function, yielding the value in the
Nth transit compartment, and T is the mean total transit time
to compartment N. In the model, the slow effect is dose
proportional, whereas the fast effect is a dose independent
fixed response. Such dose independence could reflect that the
maximum effect has been reached, or that a predetermined
acute phase response is induced. The total effect is modelled
as the sum of the slow and the fast effect, and proportional to
the priming function, which ensures that the effect is seen
only when the priming has occurred. The equations describ-
ing these rather empirical effects are,

Eslow ¼ pEs

X

doses

AMTdosesgNs;Ts t � tdoseð Þ

Efast ¼ pEf

X

doses

gNf ;Tf t � tdoseð Þ

PD tð Þ ¼ fprime tð Þ Eslow þ Efast

� �

ð7Þ

where AMTdose. is the amount of IL-21 administered by a
given dose at time tdose. The mean total delay for the slow
and the fast effect is parameterized by Ts and Tf, whereas pEf

and pEs gives the level of the fast and the slow effect. Nf and
Ns are the number of transit compartments used in the two
effects, both fixed to four in order to produce a standard
third order delay between the dose and the effect compart-
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ment. It was judged reasonable to combine the fast and the
slow effect, assuming that they act through the same mecha-
nism, as motivated by the observed saturation of the combined
effect (phenomenon 4). The combined pharmacodynamic
effect PD(t) is modelled to affect the thermoregulatory set-
point. Although not completely understood, this effect is
likely mediated by prostaglandin E2 (PGE2), which is
believed to mediate cytokine induced fever (20Y22) by
lowering the signalling of temperature sensitive neurons in
the hypothalamus. Many possible mechanisms can be pro-
posed to describe the link between drug effect, PGE2 release,
and the subsequent increase in set-point temperature. A
simple Emax model could describe the set-point temperature
as a saturable function of PD(t). In general the Emax rela-
tionship can be motivated by the classical receptor occupancy
theory under the assumption of equilibrium, e.g., see (23).
However, for the present analysis, this receptor occupancy was
modelled explicitly, without the assumption of steady state.
The rate of increase in the number of bound receptors is
proportional to the pharmacodynamic effect and the fraction
of unbound receptors. When no pharmacodynamic effect is
present, the bound receptors will decay to unbound receptors.
This can give rise to phenomenon fourVsaturation in effect,
because for an elevated temperature, only few unbound
receptors will be available, so a subsequent response will
produce only a few more bound receptors. We get,

dBR=dt ¼ PD tð Þ 1� BRð Þ � kRBR ; BR 0ð Þ ¼ 0

f3 Drug; tð Þ ¼ pEtotBR ; Tz ¼ 1þ pEtotBRð ÞTb

ð8Þ

BR is the fraction of bound receptors, and kR is the off rate.
Empirically, kR give us one extra parameter to describe the
shape of the delayed fast and slow effects, and further for the
SDE model kR is also involved in the correlation structure for
the residuals, to be discussed below. The actual effect on the
set-point is proportional to the fraction of bound receptors
with the coefficient being the effect parameter pEtot.
Whereas, pEf and pEs parameterize the effect on the
receptors, i.e., they control the induced level of saturation.
The complete set of structural parameters to be estimated for
the pharmacodynamic model was chosen as: (pEtot, kR, tprime,
Ts, Tf, pEf, pEs, and a).

The complete model of the mechanistic baseline system,
the mechanistic effect model, and the empirical drug interaction
are presented in Fig. 2, while simulations of the different model
entities are presented in Fig. 3. Following the first adminis-
tration of IL-21, the system will become primed according to
Eq. (4), which will affect the metabolic rate to maintain a day
time value Eq. (5). Subsequent administrations of IL-21 will
exhibit a reduced or a full response Eq. (7), where the fast effect
is of a fixed size, whereas the slow effect is proportional to the
dose level. The effect will convert unbound receptors to bound
receptors Eq. (8), which raises the thermoregulatory set-point
Eq. (8), so that the normal physiological regulatory system will
raise the body temperature according to the change in set-point
and metabolic rate, see Eq. (3) or Eq. (9).

Variability Model

The present analysis utilize a new technique for vari-
ability in PKPD models, where system noise is added to a set

of ordinary differential equations to account for model mis-
specification and true random fluctuations, producing a set of
stochastic differential equations. The SDEs are embedded
into a typical mixed effects setting with uncorrelated mea-
surement noise and inter-individual and/or inter-occasion
variability in the parameters. In summary, the intra-individual
statistical model can be written as,

dM ¼ �km M � f1 Drug ; tð Þð Þdt þ �MdWM ; M 0ð Þ ¼Mday

dT ¼ c�1 M � k T � Tað Þð Þdt ; T 0ð Þ ¼ Tday

dBR ¼ PD tð Þ 1� BRð Þ � kRBRð Þdt þ �BRdWBR ; BR 0ð Þ ¼ 0

k ¼ kb þ kinc T � Tzð Þ and Tz ¼ 1þ pEtotBRð ÞTb

Tobs ¼ T þ e ; e 2 N 0; �2
e

� �

ð9Þ
The SDEs given by the first three equations correspond

to the ODEs previously defined, now with system noise added
to the metabolism and the receptor compartment. Tobs gives
the observed temperature, modelled with additive uncorre-
lated measurement noise e, which is normally distributed
with standard deviation se. sMdWM and sBRdWBR give
system noise in the metabolism and the receptor compart-
ment, respectively. Where WM and WBR are independent
standard Wiener processes, e.g., see (24). System noise
produces fluctuations directly into the structural model, and
will therefore depend upon the structural parameters.
Specifically, the metabolism fluctuates and the correlation
between the metabolic rate at time t1 and t2 will be
exp �km t1 � t2j jð Þ: Similarly, the correlation of BR will be
exp �kR t1 � t2j jð Þ when no drug is included. These fluctua-
tions will thus give two time scales for the correlations in the
model.

From data presented in Fig. 5, variability is seen to be
higher after second dose than after third dose. This effect
can be understood as inter-individual variability in the time
point where the effects are switched on tprime, so that the
system can be more or less turned on during the second
dosing day, whereas it is completely turned on for the third
dose. A proportional inter-individual model was imple-
mented as,

tprime ¼ � exp �ð Þ ; � 2 N 0;4ð Þ ð10Þ

where q is the typical value of tprime, and h is a normally
distributed random effect with variance W. Several other
inter-individual and inter-occasion models were investigated
during model development.

MODEL DEVELOPMENT

Different models were discriminated based on, robust-
ness, likelihood function value, reasonable physiological
values of the parameter estimates, and performance of the
simple predictive check described in the results.

A number of different baseline models have been
investigated and rejected in favour of the chosen model.
These include, square wave metabolism, sine wave metabo-
lism, modelling temperature directly as a sine wave, and
modelling heat loss to approach metabolism exponentially

(9)
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instead of the chosen model where change in conductance
gives the change in heat loss. It was not tested whether a
more complicated oscillator model, as e.g., described in (25),
could explain the circadian rhythm.

During development of the pharmacodynamic model, it
was investigated whether simulated pharmacokinetic profiles
could be used instead of dosing to drive the pharmacody-
namics, but using dose directly turned out to be more
productive. It was further investigated whether the slow and
fast effects could be joined into one effect, and also whether
the effect on metabolism could be explained as a function of
the slow effect.

Inter-individual variability was tested for all parameters.
Whereas many of these parameters were significant based on
objective function value, only inter-individual variation for
tprime gave a large improvement, and was crucial for the
performance of the simple predictive check.

Stochastic Model Development

Investigation of system noise may be motivated by the
significantly autocorrelated residuals of the ODE model, as

demonstrated in Fig. 4. If the system noise parameters
sM and sBR in the SDE model are set to zero, then we
get our original ODE model. In other words, the ODE
and SDE models are nested, making it appropriate to test
the inclusion of system noise with the likelihood ratio test.
The inclusion of system noise was highly significant with
Dlog(L) > 1,000.

System noise was investigated for temperature, metabo-
lism, and receptor compartments, testing also a term propor-
tional to PD(t) in the receptor compartment. The following
considerations contributed to the chosen implementation:

Stochastic fluctuations in metabolism were motivated
by the natural variations in movement and exercise pat-
terns. A simulation test confirmed that the level of fluctua-
tions in metabolism were reasonable compared to those
observed in squirrel monkeys (18). The simulations of me-
tabolism were far from zero, and subsequently it was judged
unnecessary to investigate a numerically more complicated
proportional model that would ensure metabolism to be
strictly positive.

System noise for the temperature compartment could to
a large extent compensate for variations in metabolism, but
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including both effects gave only modest improvement to the
objective function value. System noise on metabolism was
selected instead of direct effects on temperature because of
an improved objective function value, more realistic simu-
lations of metabolism, and since it enabled estimation of the
rate constant km.

System noise was also introduced for the receptor
compartment, which could reasonably account for slow
fluctuations and were significant in a likelihood ratio test.
The chosen stochastic implementation ensures that the total
number of bound and unbound receptors remain constant. A
term with system noise proportional to the pharmacodynamic
effect was tested and rejected.

COMPUTATIONS

Parameter estimation was performed using NONMEM
(26), where stochastic differential equations were imple-
mented in NONMEM version VI beta as explained in (14).
The model was processed at the cluster of the PKPD group at
Uppsala University, which is a heterogenic cluster of 20
computers with dual processors running Redhat 9 (http://
www.redhat.com), kernel version 2.4.26 with the openmosix
cluster patch version 2.4.26-1 (http://www.openmosix.org).
To save computational time, it was chosen to estimate pa-
rameters by the following two stage procedure. First, we
estimate the parameters in the baseline model, using data
from the vehicle group and the 0.03 mg/kg group where no
effect is seen. Second, the complete dataset is used to

estimate the pharmacodynamic parameters, including all
variability parameters, while keeping baseline parameters
fixed to the previously estimated values. For both steps,
estimation of standard errors (SE) was obtained by boot-
strapping, i.e., from the estimation results of 100 randomly
generated datasets. New datasets were generated by replac-
ing each monkey in the dataset with a randomly selected
monkey, while allowing for duplicates. For bootstrapping of
the pharmacodynamic model, new datasets were con-
strained to contain four monkeys from all of the four
treatment groups.

RESULTS

Parameter estimates and their relative standard errors
for the pharmacodynamic model of IL-21 induced effects
on temperature regulation are presented in Table I. SDE
model parameter estimates are compared to the corres-
ponding estimates obtained with ODEs. We note that the
ODE model estimate of km was very unstable, as indicated
by a large relative standard error. During estimation of
the remaining parameters, the ODE model km was fixed
to the value obtained in the SDE model, allowing a more
reasonable comparison of the two sets of estimates. For
most parameters, the estimates are very similar, while some
estimates clearly differ in the two estimation procedures.
The most characteristic changes are that the SDE model
produces estimates with lower inter-individual variability
and measurement noise compared to the ODE model.
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Table I. Parameter Estimates and Their Relative Standard Errors From the Model of IL-21 Induced Regulation of Core Body Temperature

in Cynomolgus Monkeys

Parameter Unit SDE parameter estimate ODE parameter estimate % Difference of ODE estimate

Baseline parameters

tnight h 6.64 (1.9%) 6.73 (1.7%) 1.4

tday h 17.3 (0.8%) 17.5 (1.4%) 1.1

km 1/d 27.3 (17%) *591 (140%) 2064

kinc W/(kg-C2) 0.0169 (19%) 0.0258 (10%) 52

DT -C 1.66 (3.2%) 1.57 (3.3%) j5.4

TB -C 37.9 (0.15%) 38 (0.15%) 0.26

Pharmacodynamic parameters

Ts d 2.15 (21%) 2.45 (12%) 14.0

Tf d 0.303 (8.4%) 0.368 (7.4%) 21.5

pEs kg/(d mg) 2.97 (19%) 3.57 (48%) 20.2

pEf 1/d 2.16 (22%) 2.43 (40%) 12.5

pEtot 1 0.16 (9.4%) 0.144 (10%) j10.0

kR 1/d 4.1 (20%) 5.35 (36%) 30.5

tprime d 2.12 (9.3%) 1.88 (16%) j11.3

a Y 11.2 (37%) 5.35 (47%) j52.2

Inter-individual variability

CV(tprime) h % 14.9 (46.5%) 37.5 (37%) 152

Measurement noise

se -C 0.102 (8.2%) 0.31 (3.9%) 224

System noise

sm W/(kgd1/2) 1.46 (22%) Y Y
sR 1/d1/2 0.179 (34%) Y Y

*For the ODE model, km could not be estimated reliably, and was subsequently fixed to the value estimated in the SDE model, allowing a

more reasonable comparison of the remaining estimates.
The parameter estimates are compared to the corresponding model based on ordinary differential equations.
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A representative set of diagnostic plots are presented in
Fig. 4. Similarly to the QQ-plot and the predicted versus
observed, the autocorrelation function for individual weight-
ed residuals was computed from the vector containing data
from all individuals, as given by the NONMEM output file.

A simple predictive performance check was performed by
simulating the model 500 times and calculating the 90%
prediction interval. These prediction intervals were calculated
both for the ODE and the SDE model and compared to the
observed temperatures for each of the four treatment groups
in Fig. 5. The ODE and SDE intervals are reasonably similar,
with the same strengths and weaknesses. Both models
capture the particularly high variability following second
dose, as well as the four phenomena of the structural model:
1) absent effect after first dose, 2) effects on temperature
circadian rhythm, 3) fast and slow effects, and 4) saturation of
effect. The 90% prediction intervals seem to include more
than 90% of data, which indicates a slightly overestimated
variation, more so for the ODE model than the SDE model.

Figure 6 compares simulated individual profiles from the
SDE model and the ODE model of the observed temper-
atures following third administration of IL-21 at a dose level
of 3 mg/kg, which is the most critical time for the present
study. Simulations based on SDEs vary continuously, simi-
larly to the observed temperatures, whereas ODE simula-
tions are seen to jump up and down erratically.

DISCUSSION

The thermoregulatory effects of IL-21 in cynomolgus
monkeys were described by a PKPD model based on stochas-
tic differential equations. Whereas temperature modelling is
well established in the literature, the present model and results
do include a series of features that justify further discussion.

Priming The mechanism behind an absent effect on
temperature after first dose is presently not understood. This
priming effect was described by an empirical function that
switches on sometime after the first dose, and inter-individual
variation in the time of onset could describe an increased
variation after second dose. However, the model does not
satisfactorily describe how the system returns to normal.
During model development it was attempted to model
priming as a function of the slow effect, but various attempts
were discarded because of poor simulation properties.

Receptor model The standard Emax model was extended
to explicitly include a receptor compartment, extending the
model with an off rate for the receptors kR. Empirically, this
off rate is related to the shape of the response, and to the
correlation structure in the SDE model. The estimated value
for kR corresponds to a half-life of 4 h, and it is presently not
known whether this off rate relate to that of any physiological
receptor involved in the response. In particular, intracerebral
injections of PGE2 in rat leads to elevated temperatures
lasting for only tens of minutes (22), indicating a much faster
half life of response.

Metabolism model Whereas the metabolism was unob-
served in the present study, the circadian rhythm of thermo-
regulation has been investigated in detail for squirrel monkeys
(18). These calorimetric experiments showed that the meta-
bolic rate begin to decrease around the time of lights-off, and
reach a stable level within 1.5Y2.5 h. This is in reasonable
agreement with the estimated value of km, corresponding to a
half life of 0.7 h for cynomolgus monkeys. Since the cor-
relation structure in data contributed significantly to the
estimation of km, this result constitutes a test, both for the
structural model and for the implemented system noise.

For the squirrel monkeys, it was also found experimen-
tally that the metabolic rate varies approximately between
3 W/kg at night and 5 W/kg at day (18). Cynomolgus monkeys
are approximately three times larger than squirrel monkeys,
so allometric scaling yield a night and day time metabolic
rate, of 2.57 and 3.45 W/kg in cynomolgus monkeys. In the
present analysis, we used a fixed baseline metabolic rate Mb

in cynomolgus monkeys of 3 W/kg. From the fixed value of
Mb and the estimated parameter values of kinc, Tb, and DT,
we can calculate or simulate model predictions for the night
and day time metabolic rate in cynomolgus monkeys. The
model prediction yield night and day time values at 2.63 and
3.40 W/kg which is in perfect agreement with the values
found by allometric scaling.

Model Diagnostics A series of diagnostic plots were
presented in Fig. 4 to compare the ODE model with the SDE
model. Models based on ODEs typically assume indepen-
dence of the individual prediction errors, whereas SDE mod-
els assume independence of the individual one-step prediction
errors, i.e., prediction errors based on predictions that include
information of all previous data to predict the next observa-
tion. So the individual residuals refer to the one-step predic-
tion errors, which reduce to the usual prediction errors when
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ODEs are used. Diagnostic plots of predictions versus obser-
vations demonstrate that SDE model predictions are closer to
the observations than ODE model predictions, illustrating
that one-step predictions are based on all previous data for
SDEs, but not for ODEs. The autocorrelation function pre-
sented in Fig. 4 clearly demonstrates significantly correlated
individual residuals for the ODE model, which falsifies the
statistical model assumption. The SDE model on the other
hand, successfully passes this statistical test. Diagnostic Quanti-
leYQuantile (QQ) plots presented in Fig. 4 illustrate that the
weighted individual residuals are close to being normal dis-
tributed for the SDE model as well as for the ODE model.
This is one of the fundamental assumptions for both models,
and particularly for the Extended Kalman Filter approxima-
tion to the individual SDE likelihood function (12). Failure to
produce Gaussian residuals may indicate that the Extended
Kalman Filter is inadequate, possibly motivating the pursuit of
higher order filters or other estimation methods (24).

Do SDEs represent true fluctuations? Investigation of
system noise may be motivated by the significantly autocor-
related residuals of the ODE model, as demonstrated in
Fig. 4. Such correlations may be due to true variations that can
be modelled by SDEs, or by model misspecification that may
be described but not reproduced by SDEs. If the estimated
system noise in reality originates from model misspecification,
one would presume that simulations with SDEs would pro-
duce large confidence bands, because unlike a model defi-
ciency, system noise will change the model in a different
direction with every simulation. Figure 5 clearly demonstrates
that the SDE model reproduces data with reasonable confi-
dence bands, leading to the conclusion that the autocorrelated
residuals reflect true fluctuations in data, and Fig. 6 confirms
that the simulations look reasonable compared to data.

System noise and inter-occasion variability From a
mixed-effects modelling perspective, the inter-occasion vari-
ability (IOV) and the residual variability are treated as
separate entities. However, in some cases it may be more
realistic to explain inter-occasion variability as a continuous
random varying process, i.e., system noise that is high on
some occasions and low on others. During model develop-
ment, the likelihood ratio test indicated the significant
between-day variability in the steady state day and night
time temperature (Tday and Tnight) for both the ODE and the
SDE model. However, for the ODE model IOV was seen to
give individual predictions that were visibly closer to data,
while this was not the case for SDEs. For SDEs, IOV did not
visibly improve individual predictions, neither for the diag-
nostic plots in Fig. 4, nor when comparing to observations
over time. Since the implemented system noise seemed to
reasonably describe the day-to-day variation of Tday and
Tnight, no explicit IOV was included for these parameters,
which considerably reduced the computational time.

Simulation Properties The simple predictive check given
in Fig. 5 provide a reasonable diagnostic for the model to
capture overall differences between treatment groups, and
thereby predict the overall outcome of new experimental
designs. However, PKPD models are quite often used for
predictions of new individuals possibly in new treatment
regimens. For any drug that may elevate body temperature,
one might be interested in the probability for a new
individual to show three readings (at least 1 h apart) higher

than 38-C (100.4-F) or a single reading higher than 38.3-C
(101-F), which is used in oncology practice as a criteria for
significant fever (27). Model predictions of such probabilities
require accurate simulations of the individual profiles.
Figure 6 demonstrate that simulations based on SDEs vary
continuously, similarly to the observed temperatures, whereas
ODE simulations are seen to jump up and down erratically,
possibly leading to erroneous conclusions.

Benefits of SDEs In summary, the benefits of SDEs were
found to include,

1. The ODE model with uncorrelated residuals could be
falsified by a simple statistical test of the autocorrelation func-
tion (ACF), whereas the SDE model was able to describe the
correlation structure in the residuals. The ACF can be seen as
a general model diagnostic, where an erroneous ACF will fal-
sify the model, but the ACF may also be a more direct quality
mark for model simulations. In particular, simulated data
could be used to assess precision of parameter estimates for
different sampling schedules. It is to be expected that the
results would change if simulations are made with a model that
produce a completely different ACF for the residual errors.

2. The introduction of SDEs allows us to quantify and
propose a mechanism for the fluctuations in temperature, i.e.,
random fluctuations in metabolic rate and in the fraction of
bound receptors that affect the thermoregulatory set-point.

3. The high measurement error estimated in the ODE
model caused simulations to jump up and down erratically
and unrealistically compared to simulations based on SDEs
that realistically resembled the variations seen in data. This
could become important, e.g., if one wish to predict the prob-
ability that treatment of a given individual cause temperature
elevation above a certain level.

4. IIV was reduced by the inclusion of system noise, and
the simple predictive check demonstrated that the SDE model
led to narrower confidence intervals, as is often seen with
more accurate variability models.

5. SDEs allowed us to simplify the model for inter-
occasion variability on day and night time steady state tem-
perature, which significantly improved the model speed.

Other statistical techniques, such as the autoregressive
(AR) process that has previously been incorporated in
NONMEM (28) or the more general autoregressive moving
average (ARMA) process, would also enable quite general
inclusion of correlated residuals. The present approach
favours SDEs, because they incorporate random fluctuations
directly on the different mechanisms or entities of the model,
which gives us an understanding of the origin of the cor-
relation structure found in data.

Model Limitations and potential future applications First
of all, the model includes only the most basic mechanisms of
heat control, and it fail to explain what happens e.g., if the
ambient temperature is changed far from 21-C.

As previously mentioned the empirical effects on priming
have not been implemented to return to normal. This poses
serious problems for the model to simulate longer dosing
intervals, long term treatment, and termination of treatment.
We should note that previous unpublished experiments have
demonstrated qualitatively similar patterns of IL-21 induced
effects on temperature regulation for a series of different

308 Overgaard, Holford, Rytved, and Madsen



dosing regiments. However, the empirical parts of the model
must be extended if it is to give a complete understanding of
the effects of IL-21 on thermoregulation.

On the other hand, a mechanistic framework of thermo-
regulation has been put forward. It is hoped that this frame-
work can be used to improve the descriptions and predictions
not only for IL-21, but also for other pharmaceutical and
biological compounds. In particular it is hoped that the mech-
anistic aspects of the thermoregulation model can improve
predictions of the overall outcome of new dosing regimens,
whereas the inclusion of SDEs can provide better predictions
of the variations seen in temperature for individual animals.

CONCLUSION

A new baseline PKPD model for thermoregulation has
been formulated to include potential effects on the circadian
rhythm, metabolism, heat loss, and a thermoregulatory set-
point. The baseline model quantitatively reproduces basic
physiological findings of the circadian regulation of heat
production and heat loss in monkeys. It further qualitatively
reflects some basic effects of thermoregulation following
exercise and changed ambient temperatures, while clearly
not explaining all phenomena in this complicated system.

The proposed mechanisms of IL-21 were incorporated
into the baseline model via effects on the circadian rhythm of
metabolism, and on the thermoregulatory set-point, which
could describe a complex set of IL-21 induced phenomena.
These phenomena include 1) absent effect after first dose, 2)
disappearance of the circadian rhythm, 3) fast and slow effects,
and 4) saturation of effect. Further more, inter-individual
variability in the onset of effect could explain increased
variability after second dose.

System noise was implemented in the metabolism and
the receptor compartment, converting the ODE model into
an SDE model. SDEs provided a more realistic description
of the variability that improved individual simulation/predic-
tive properties, accelerated model speed by simplifying inter-
occasion variability, and finally changed the model into one
that could not be falsified by the autocorrelation function.
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